If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+32X-360=0
a = 1; b = 32; c = -360;
Δ = b2-4ac
Δ = 322-4·1·(-360)
Δ = 2464
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2464}=\sqrt{16*154}=\sqrt{16}*\sqrt{154}=4\sqrt{154}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-4\sqrt{154}}{2*1}=\frac{-32-4\sqrt{154}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+4\sqrt{154}}{2*1}=\frac{-32+4\sqrt{154}}{2} $
| X=1.125+2.25y | | 4+3(2n-1)=43 | | -0.08x+1.1=3.2x-5.14 | | (4a+1)=21 | | 6.8-2x=10.2 | | x+1/4=15/12 | | 4(2x-1)=3x-5 | | 3(n+2)=2(5n-4) | | 4(k-1)=2(k-5) | | -4(2p=5)=20 | | 2j=8+4 | | g=5+2 | | r3=5 | | 6-6k=1 | | 6-6k=10 | | 6-6k=32 | | 3m-5/(m-3)+1/2(4m-6)=2m-3 | | 3x-1/5-x/15=3 | | 50x22=1100 | | 9x-7=10x | | 75x-600=375 | | 5/4(x+1/6)=-205/24 | | W/4-11/12=w/3 | | -4y-49=9(y+9) | | -4y-49=(y+2) | | 2(x+2)=7x-1 | | 2w+46=-8(w-2) | | -7/8=-2/9n | | -3y+6(y-5)=-33 | | 2u+4(u+6)=-18 | | 39=5w+2(w-5) | | -20=5(w-2) |